A Secreted BMP Antagonist, Cer1, Fine Tunes the Spatial Organization of the Ureteric Bud Tree during Mouse Kidney Development

نویسندگان

  • Lijun Chi
  • Ulla Saarela
  • Antti Railo
  • Renata Prunskaite-Hyyryläinen
  • Ilya Skovorodkin
  • Shelagh Anthony
  • Kenjiro Katsu
  • Yu Liu
  • Jingdong Shan
  • Ana Marisa Salgueiro
  • José António Belo
  • Jamie Davies
  • Yuji Yokouchi
  • Seppo J. Vainio
چکیده

The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis.

Antagonists act to restrict and negatively modulate the activity of secreted signals during progression of embryogenesis. In mouse embryos lacking the extra-cellular BMP antagonist gremlin 1 (Grem1), metanephric development is disrupted at the stage of initiating ureteric bud outgrowth. Treatment of mutant kidney rudiments in culture with recombinant gremlin 1 protein induces additional epithel...

متن کامل

BMP receptor ALK3 controls collecting system development.

The molecular signals that regulate growth and branching of the ureteric bud during formation of the renal collecting system are largely undefined. Members of the bone morphogenetic protein (BMP) family signal through the type I BMP receptor ALK3 to inhibit ureteric bud and collecting duct cell morphogenesis in vitro. We investigated the function of the BMP signaling pathway in vivo by generati...

متن کامل

Genetic Analysis Reveals an Unexpected Role of BMP7 in Initiation of Ureteric Bud Outgrowth in Mouse Embryos

BACKGROUND Genetic analysis in the mouse revealed that GREMLIN1 (GREM1)-mediated antagonism of BMP4 is essential for ureteric epithelial branching as the disruption of ureteric bud outgrowth and renal agenesis in Grem1-deficient embryos is restored by additional inactivation of one Bmp4 allele. Another BMP ligand, BMP7, was shown to control the proliferative expansion of nephrogenic progenitors...

متن کامل

Lrp4 Regulates Initiation of Ureteric Budding and Is Crucial for Kidney Formation – A Mouse Model for Cenani-Lenz Syndrome

BACKGROUND Development of the kidney is initiated when the ureteric bud (UB) branches from the Wolffian duct and invades the overlying metanephric mesenchyme (MM) triggering the mesenchymal/epithelial interactions that are the basis of organ formation. Multiple signaling pathways must be integrated to ensure proper timing and location of the ureteric bud formation. METHODS AND PRINCIPAL FINDI...

متن کامل

Novel regulators of kidney development from the tips of the ureteric bud.

Mammalian nephrogenesis depends on the interaction between the ureteric bud and the metanephric mesenchyme. As the ureteric bud undergoes branching and segmentation, the stalks differentiate into the collecting system of the mature kidney, while the tip cells interact with the adjacent cells of the metanephric mesenchyme, inducing their conversion into nephrons. This induction is mediated by se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011